Empa - the place where innovation starts

Empa is the research institute for materials science and technology of the ETH Domain and conducts cutting-edge research for the benefit of industry and the well-being of society.

The Laboratory for Building Energy Materials and Components is seeking for a

PhD Student for “Computer aided multi-objective aerogel process optimization through model fitting”


Aerogels are a class of highly porous nanomaterials with interesting properties for many applications. The technical relevance of aerogels as insulation materials has come to life with their second wave of industrialization around 2004. The focus of current research lies on life science and environmental applications, which are still further away from commercialization. The key properties of aerogels – such as thermal conductivity, mechanical stability, sorption – critically depend on their microstructure. Thus, optimization of aerogels towards a specific application generally involves optimization of their microstructure. However, mostly due to their nanoscale characteristic length scale, there are currently no methods to directly determine the true 3D microstructure of aerogels. State-of-the-art techniques such as electron microscopy, physisorption or small angle scattering (SAS), only provide partial structural information. However, the combination of the different available techniques should provide sufficient data to allow the determination of their 3D microstructure.

Today the optimization of aerogels towards a specific application is generally done via experimental studies. However the amount of input data (i.e. experiments or trial runs) required for full optimization will in many cases exceed the experimentally feasible. This is a known problem in materials science leading to an increased popularity of modelling as a method to expand the input data, allowing the successful optimization of materials and microstructures for specific target applications. A reliable 3D microstructural aerogel model, developed by fitting simultaneously to data from different experimental techniques, will allow such an approach. The aim of this project is thus to develop such a 3D microstructural model and to show that the model will allow faster and more reliable optimization of aerogels towards a specific application.


The goals of this project are:

Your Profile

For this project, we are looking for a PhD student with a degree in materials science, chemistry, physics or computational science and engineering, capable of working autonomously but as a part of the team. The candidate should have a sound basis in numerical modelling and programming.


The “Building Energy Materials and Components” laboratory at Empa spans subjects from fundamental research of wet chemical / sol-gel methods to the development of building components with the overarching goal to improve energy efficiency and reduce fossil fuel consumption. In this multidisciplinary environment, communication and interaction to create synergies and develop new ideas is highly valued.

For further information about the position please contact Dr Sandra Galmarini sandra.galmarini@empa.ch and visit our websites www.empa.ch/web/s312 and Empa-Video

We look forward to receiving your online application including a letter of motivation, CV, diplomas with transcripts and contact details of two referees. Please upload the requested documents through our webpage. Applications via email will not be considered.

Empa, Patricia Nitzsche, Human Resources, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland.